

Program Structure for BE Instrumentation Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VII

Course	Course Name	T(eaching Sch Contact Ho	neme urs)		Credits Assigned			
Code		Theo ry	Practica l	Tutoria l	Theory	Practical	Tutoria l	Total	
ISC701	Industrial Process Control	4	-	-	4	-	-	4	
ISC702	Biomedical Instrumentation	4	-	-	4	-	-	4	
ISC703	Industrial Automation	4	-	-	4	-	-	4	
ISDLO70 3X	Department Level Optional Course III	4	-	-	4	-	-	4	
ILO701X	701X Institute Level Optional Course I		-	-	3	-	-	3	
ISL701	Industrial Process Control – Lab Practice	-	2	-	-	1	-	1	
ISL702	Biomedical Instrumentation – Lab Practice	-	2	-	-	1	-	1	
ISL703	Industrial Automation – Lab Practice	-	2	-	-	1	-	1	
ISL704	Department Level Optional Course III – Lab Practice	-	2	-	-	1	-	1	
ISL705	Project I	-	6	-	-	3	-	3	
	Total	19	14	-	19	07	-	26	

Examination Scheme for Semester VII

		The	ory	-	0.1		
Course	Course Name	End Sem Exam	Internal Assessment	Term Work	Oral	Oral	
Code		(ESE)	(IA)				Total
		Max	Max	Max	Max	Max	IVIAI KS
		Marks	Marks	Marks	Marks	Marks	
ISC701	Industrial Process Control	80	20	-	-	_	100
ISC702	Biomedical Instrumentation	80	20	-	-	-	100
ISC703	Industrial Automation	80	20	-	-	-	100
ISDLO7 03X	Department Level Optional Course III	80	20	-	-	-	100
ILO701 X	Institute Level Optional Course I	80	20	-	-	-	100
ISL701	Industrial Process Control – Lab Practice	-	-	25	25	-	50
ISL702	Biomedical Instrumentation – Lab Practice	-	-	25	25	-	50
ISL703	Industrial Automation – Lab Practice	-	-	25	25	-	50
ISL704	Department Level Optional Course III – Lab Practice	-	-	25	25	-	50
ISL705	Project I	-	-	50	50	-	100
	Total	400	100	150	150	-	800

Subject Code	Subject Name	Tea	ching Sch	eme				
	Industrial	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISC701	Process Control	4	-	-	4	-	-	4

Subject Code	Subject Name			I	Examinatio	n scheme								
			Theory	Marks (100)		Pract.							
		Intern	al Assessi	ment (20)	End Sem	Term work	and	Oral	Total					
		Test1	Test2	Avg.	Exam		Oral							
ISC701	Industrial Process Control	20	20	20	80	-	-	-	100					

Subject Code	Subject Name	credits							
ISC701	Industrial Process Control	4							
Course objectives	1. To impart the knowledge of different industrial unit operations.								
	2. To make the students capable to design and develop instrumentation and control schemes for industrial process	ses.							
	3. To give them overview of various process industries, hazardous areas and their classification.								
Course Outcomes	The students will be able to:								
1. Explain working and control of various heat transfer uni operations									
	2. Explain working and control of various heat and mass tra unit operations	nsfer							
	3. Explain the miscellaneous process equipment and their co	ontrol							
	4. Describe the processes of various continuous process industries and instrumentation involved in them.								
	5. Describe the processes of various batch process industri instrumentation involved in them.	ries and							
	6. Classify hazardous areas in the industry.								

Details of Syllabus:

Prerequisite: Temperature, flow, pressure sensors, fundamentals of process instrumentation and control, control schemes like feedback, feedforward, cascade, split range, selective etc., basics of unit operations.

Module	Content	Hrs	CO Mapping
1	 Control System for Heat transfer unit operations: Introduction to unit operations and processes, concept of heat transfers and energy balance, heat transfer coefficient. Heat exchanger control: classification as per fluid flow arrangement and construction, feedback, feed-forward, bypass control schemes, fouling in heat exchangers. Boiler control: Types, working and operation of boilers, Terms related-Shrink and swell effect and excess oxygen, boiler efficiency, boiler performance terminology. Boiler controls- Drum level control- Single, two and three elements, and Combustion Control-Type 1, 2, 3 and 4, steam temperature control, boiler pressure control, furnace draft control, Burner Management System. Evaporator control: Evaporator terminologies, Types of Evaporator, mathematical model for evaporator, control systems for Evaporator – feedback, cascade, feed forward and selective control. Furnace control: Start- up heaters, fired re-boilers, process and safety controls 	13	CO1
2	 Control System for Heat and mass transfer unit operations: Distillation column: Basic principle, Distillation equipment and its accessories. Batch and continuous distillation, Binary product distillation, multi-product distillation, side-draw product distillation column. Distillation column control strategies- Top and bottom product composition controls, Using chromatograph, Pressure controls, Vacuum distillation, Vapors recompression and pressure control, Feed controls- Column feed controls and Feed temperature control, economizer. Dryer control: Process of drying, types of dryer- Tray, Vacuum dryer, fluidized bed, Double drum dryer, rotary, turbo and spray, and their control strategies. Crystallizers: Process of crystallization, Super-saturation methods, types of crystallizer, control of evaporating crystallizer, cooling crystallizers, vacuum crystallizers. Reactor control: Reactor characteristics, runaway reaction, various schemes of temperature control of reactors. 	12	CO2
3	Miscellaneous process equipment: Compressor- Classification, Phenomenon of Surge for centrifugal compressors, Methods of surge control for compressors. Gas turbine- Introduction, gas turbine layouts, closed cycle gas turbine, Engine controls.	05	CO3
4	Continuous Process Industries: Refinery Industry: Process flow diagram, separation, Treatment-Hydro- desulphurization unit, conversion methods- Fluid Catalytic Cracking, blending, sensors and control schemes.	07	CO4

	Iron and steel Industry: Process flow diagram, Sensors and Control		
	schemes.		
	Batch Process Industries:		
5	Food processing: Milk pasteurization.	07	CO5
5	Pharmaceutical industries- Penicillin-G production, sensors and control	07	
	schemes.		
	Safety in Instrumentation control systems:		
6	Area and material classification as per IEC and NEC standard, techniques	0.4	COC
	used to reduce explosion hazards, intrinsic safety, and installation of	04	006
	intrinsically safe systems.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of

4 to 5 marks will be asked.

- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

Text Books:

- 1. W. L. McCabe and Julian Smith, "Unit operation and chemical engineering", Tata McGraw Hill, Sixth edition, 2001.
- 2. Bela G. Liptak, "Instrument engineers handbook Process control", Chilton book company, third edition, 1995.
- 3. Bela G. Liptak, "Instrumentation in the processing industries", Chilton book company-first edition, 1973.

Reference Books:

- 1. Douglas M. Considine, "Process industrial instruments and controls handbook", McGraw Hill- 4th edition, 1993.
- 2. George T. Austin, "Shreve's chemical process industries", Mc-GrawHill- fifth edition, 1984.
- 3. George Stephenopoulos, "Chemical process control", PHI-1999.
- 4. David Lindsey, "Power Plant control and instrumentation control of boilers HRSG", Institution of Engineering and Technology,
- 5. G.F. Gilman "Boiler Control Systems Engineering", ISA Publication, 2005,
- 6. A.M.Y.Razak, Industrial gas turbines Performance and operability", CRC Press Woodhead

Publishing Limited and CRC Press LLC, 2007.

Sub code	Subject Name	Teaching S	cheme (H	lrs)	Credits Assigned			
	Subject Mame	Theory	Pract	Tut.	Theory	Pract.	Tut.	Total
ISC702	Biomedical Instrumentation	4	-	-	4	-	-	4

Sub code		Examination Scheme							
		Т	heory (ou	it of 10	0)		Droot		
	Subject Name	Intern	al Assess out of 20)	ment	End sem	Term Work	and	Ora l	Total
		Test 1	Test 2	Avg	Exam		01 a1		
ISC702	Biomedical Instrumentation	20	20	20	80	-	-	-	100

Subject Code	Subject Name	Credits							
ISC702	Biomedical Instrumentation	4							
Course Objectives	To make students understand the Identification, classification, and principle of various Biomedical Instruments used for Bio measurement To make students understand the application of the various biomedical in	l working popotential							
	in diagnosis, therapeutic and imaging fields.								
Course Outcomes	The students will be able								
	1. To identify various Bio-potential with their specifications and perform their measurements.								
	2. To discuss various Physiological systems and to identify their parame related measurements.	eters and							
	3. To explain the principle and working of various cardiovascular param their measurement techniques with applications.	eters and							
	4. To relate between the different life support instruments and to describe their applications.								
	5. To distinguish between the various medical imaging techniques based principles and concepts involved in them.	l on the							
	6. To describe the significance of electrical safety in biomedical measure	ement.							

Module	Topics	Hrs.	CO Mapping
	Bio-Potentials and their Measurement:		
	Structure of Cell, Origin of Bio-potential, electrical activity of cell and		
	its characteristics and specifications. Measurement of RMP and AP.		
1	Electrode-Electrolyte interface and types of bio-potential electrodes.	06	CO1
1		00	001
	Physiological Systems and Related Measurement:		
	• Respiratory system- Physiology of respiration and		
	measurements of respiratory related parameters.		
2	• Nervous system- Nerve cell, neuronal communication, nerve-	12	CO^2
2	muscle physiology, CNS, PNS. Generation of EEG and study	12	002
	of its characteristics. Normal and abnormal EEG, evoked		
	potential and epilepsy.		
	• Muscular system- Generation of EMG signal, specification		
	and measurement.		
	• Cardiovascular system- Structure of Heart, Electrical and		
	Mechanical activity of Heart, ECG measurements and Cardiac		
	 Design of ECG amplifier 		
	Cardiovascular Measurement:		
	Blood Pressure- Direct and Indirect types.		
	• Blood Flow- Electromagnetic and Ultrasonic types.		
	• Blood Volume- Types of Plethysmography. (Impedance,	00	CO^{2}
3	Capacitive and Photoelectric)	08	005
	• Cardiac Output- Flicks method, Dye-dilution and Thermo-		
	dilution type.		
	• Heart sound measurement.		
	Life support Instruments:		
	• Patient monitoring system - Bedside monitors, Central nurse		
	station		
4	• Pacemaker- Types of Pacemaker, mode of pacing and its application	10	CO4
	 Defibrillator- AC and DC Defibrillators and their application 		
	 Heart Lung machine and its application during surgery. 		
	• Hemodialysis system and the precautions to be taken during		
	dialysis.		
	• Ventilator system and its important parameters for monitoring		
	Imaging Techniques: *		
5	• X-Ray machine and its application. CT Scan- CT Number,		
5	Block Diagram, scanning system and application.	10	
	• Ultrasound Imaging- Modes of scanning and their application.	10	CO5
	• MRI- Concepts and image generation, block diagram and its		
	application.		
	- introduction to Functional imaging.		
	Significance of Electrical Safety.		
6	Physiological effects of electrical current. Shock Hazards from electrical	02	CO6
v	equipment and methods of accident prevention	02	000
	equipment and methods of accident prevention.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.

3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.

4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- Leslie Cromwell, "Biomedical Instrumentation and Measurements", 2nd Edition, Pearson Education, 1980.
- 2) John G. Webster, "Medical Instrumentation", John Wiley and Sons, 4th edition, 2010.
- 3) R. S. Khandpur, "Biomedical Instrumentation", TMH, 2004

Reference Books:

- 1) Richard Aston, "Principles of Biomedical Instrumentation and Instruments", PH, 1991.
- Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", PHI/Pearson Education, 4th edition, 2001.
- 3) John E Hall, Gyton's Medical Physiology, 12th edition, 2011
- 4) L. E. Baker L. A. Geddes, "Principles of Applied Biomedical Instrumentation", John Wiley and Sons, 3rd Edition, 1991.

Subject code	Subject Name	Teaching scheme			Credit assigned				
ISC703	Industrial	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Automation	4	-	-	4		-	4	

Sub	Subject	Examin	Examination scheme								
Code	Name	Theory	(100)			Term	Pract.	Oral	Total		
		Internal Assessment(20)			End	work	and				
					sem		Oral				
		Test1	Test	Avg.	Exam						
			2	_							
ISC703	Industrial	20	20	20	80	-	_	-	100		
	Automation										

Subject Code	Subject Name	credits						
ISC703	Industrial Automation	4						
Course objective	• To impart knowledge about the fundamentals of auton various automation systems used in industry.	To impart knowledge about the fundamentals of automation and various automation systems used in industry.						
	• To impart the knowledge about the architecture, wo applications of PLC, DCS and SCADA	To impart the knowledge about the architecture, working and applications of PLC, DCS and SCADA						
	• To make the students understand the requirements Instrumented System (SIS).	of Safety						
Course Outcome	The students will be able to							
	1. Describe automation, need, importance and applied	cations in						
	industry.							
	2. Identify components of PLC, and develop PLC lad instructions of PLC and design PLC based appli proper selection and sizing criteria	lder using cation by						
	3. Explain evolution and architecture of DCS, hierarchic	cal control						
	in DCS, programming DCS through Function Block	Diagram						
	(FBD) method.							
	4. Describe SCADA architecture, communication in SC	ADA and						
	develop any application based on SCADA along	with GUI						
	using SCADA software.							
	5. Explain database and alarm management system							
	6. Recognize the need of SIS and describe risk reduction	methods.						

Details of Syllabus:

Prerequisite: Knowledge of Digital Electronics, Process Instrumentation and Control.

Module	Content	Hrs.	CO
			Mapping
1	Automation Fundamentals	04	CO1
	Automation, Need for automation and its importance, Types of		
	automation, Automation applications, Expectations of automation.		
	Process and factory automation.		
	lypes of plant and control – categories in industry, open loop and closed loop control functions continuous processes discrete		
	processes and mixed processes		
	Automation hierarchy – large control system hierarchy data quantity		
	& quality and hierarchical control		
	Control system architecture – evolution and current trends		
	comparison of different architectures.		
2	Programmable Logic Controller	14	CO2
	Hardware		
	Evolution of PLC, Definition, functions of PLC, Advantages,		
	Architecture, working of PLC, Scan time, Types & Specifications.		
	Safety PLC		
	DI-DO-AI-AO examples and ratings, I/O modules, local and remote		
	I/O expansion, special purpose modules, wiring diagrams of		
	different I/O modules, communication modules, Memory &		
	addressing- memory organization (system memory and application		
	memory), I/O addressing, hardware to software interface.		
	Software Development of Belay Logic Lodder Diagram introduction to DLC		
	Programming programming devices IFC standard PLC		
	programming languages ID programming-basic ID instructions		
	PLC Timers and Counters: Types and examples data transfer &		
	program control instructions, advanced PLC instructions, PID		
	Control using PLC.		
	Case study:		
	PLC selection and configuration for any one process applications.		
3	Distributed Control System (DCS)	12	CO3
	Introduction to DCS. Evolution of DCS, DCS flow sheet symbols,		
	architecture of DCS. Controller, Input and output modules,		
	Communication module, data highway, local I/O bus, Workstations,		
	Specifications of DCS. Introduction of Hierarchical control of		
	memory: Task fisting, Higher and Lower computer level task.		
	computer functions Control techniques Supervisory Control		
	Algorithm DCS & Supervisory computer displays advanced		
	control Strategies computer interface with DCS		
	DCS System integration with PLCs computer: HMI. Man machine		
	interface sequencing. Supervisory control, and integration with PLC.		
	personal computers and direct I/O, serial linkages, network linkages.		
	link between networks.		
	Introduction to DCS Programming, Function Block Diagram method		
	for DCS programming.		

4	Supervisory Control and Data Acquisition (SCADA)	10	CO4
	SCADA introduction, brief history of SCADA, elements of		
	SCADA.		
	Features of SCADA, MTU- functions of MTU, RTU- Functions of		
	RTU, Protocol Detail, Specifications of SCADA		
	SCADA as a real time system Communications in SCADA- types &		
	methods used, components, Protocol structure and Mediums used		
	for communications.		
	SCADA Development for any one typical application.		
	Programming for GUI development using SCADA software.		
5	Database and Alarm Management, MES, ERP	04	CO5
	Database management, Philosophies of Alarm Management, Alarm		
	reporting, types of alarms generated and acceptance of alarms.		
	Manufacturing Execution System, Enterprise Resource Planning,		
	Integration with enterprise system.		
6	Safety Instrumented System (SIS)	04	CO6
	Need for safety instrumentation- risk and risk reduction methods,		
	hazards analysis. Process control systems and SIS.		
	Safety Integrity Levels (SIL) and availability. Introduction to the		
	international functional safety standard IEC 61508.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Samuel M. Herb, "Understanding Distributed Processor Systems for Control", ISA Publication, 1999.
- 2. Thomas Hughes, "Programmable Logic Controller", ISA Publication, 2001.
- 3. Stuart A. Boyer, "SCADA supervisory control and data acquisition", ISA Publication, 2010.
- 4. Gruhn and Cheddie, "Safety Shutdown Systems" ISA, 1998,

Reference Books:

- 1. Poppovik Bhatkar, "Distributed Computer Control for Industrial Automation", Dekkar Publication, 1990.
- 2. S.K. Singh, "Computer Aided Process Control", Prentice Hall of India, 2004.
- 3. Krishna Kant, "Computer Based Process Control", Prentice Hall of India
- 4. N.E. Battikha, "The Management of Control System: Justification and Technical Auditing", ISA.

- 5. Gary Dunning, "Introduction to Programmable Logic controller", Thomas Learning, edition, 2001.
- 6. John. W. Webb, Ronald A Reis, "Programmable Logic Controllers Principles and Applications", 3rd edition, Prentice Hall Inc., New Jersey, 1995.
- 7. Bela G. Liptak "Instrument engineer's handbook- Process control" Chilton book company-3rd edition.
- 8. D.J. Smith & K.G.L. Simpson, "Functional Safety: A Straightforward Guide to IEC61508 and Related Standards", -Butterworth-Heinemann Publications.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISDLO7031	Image Processing	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		4	-	-	4	-	-	4

		Examination scheme									
	Subject		Theory ((out of 1	100)		Dreat				
Sub Code	Name	Internal Assessment(20)			End Sem	Term work	and	l Oral	Total		
		Test1	Test2	Avg.	Exam		Orai				
ISDLO7031	Image Processing	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	Credits						
ISDLO7031	Image Processing	4						
	1. To explain basic principles of Image processing.							
	2. To apply time and frequency domain transformation method on 2	D Images						
	3. To study different Image enhancement techniques in spatial and	frequency						
	domain.							
Course Objectives	4. To study Image restoration techniques to reduce the noise ar	nd recover						
	original Image.							
	5. To study Lossy and lossless Image compression by different methods.							
	6. To study Image morphology and segmentation techniques to represent							
	images into more meaningful and easier to analyze.							
	Students will be able to -							
	1. Describe general terminology of Image processing.							
	2. Examine Images and their analysis by various transformation tech	nniques.						
	3. Apply basic Image enhancement operations on Images.							
Course Outcomes	4. Evaluate mathematical tools such as Image morphology a	nd Image						
	segmentation to extract various Image components.							
	5. Discuss Image compression methods							
	6. Discuss Image degradation and restoration model.							

Details of Syllabus:

Prerequisite: Knowledge of Fundamentals of Engineering Mathematics, Basic Operation with Matrices, Signals and Systems and Digital Signal Processing.

Module	Contents	Hrs	CO
			mapping
1	Introduction to Image processing: -Concept of Digital Image,	08	CO1
	Fundamental steps in Image processing, Components of Image		
	processing systems, Elements of visual perception, Image formation		
	model, Sampling and Quantization of Image, Relationships between		
	pixels like neighbours of pixel, Adjacency, Connectivity, Distance		
	measures, Translation, Scaling, Rotation and Perspective projection		
	of Image.		

2	Image Transformation : -Orthogonal and Orthonormal Function, 2D Discrete Fourier transform and its properties, Fast Fourier transform of Image, Discrete Cosine and Sine transform (2D), Walsh-Hadamard transform, Haar transform, Slant transform, Karhunen-Loeve transform, Introduction to Wavelet transform and its application.	07	CO2
3	Image Enhancement: -Image enhancement in spatial domain, Basic gray level transformation like Image Negatives, Log transformations, Power Law transformations, Contrast stretching, Gray level and Bit plane slicing, Histogram processing, Enhancement using Arithmetic/Logic operation, Smoothing spatial filters, Sharpening spatial filters, Image enhancement in frequency domain, Smoothing frequency domain filters, Sharpening frequency domain filters, Homomorphic filtering.	10	CO3
4	 Morphological Image Processing: Logic operations of Binary Images, Dilation and Erosion, Opening and Closing, Hit or Miss transformation, Boundary extraction, Region filling, Extraction of connected component, Thinning, Thickening, Skeletons. Image Segmentation: Point, Line and Edge detection, Edge linking and boundary detection (Hough Transform), Thresholding, Region based segmentation. Image Registration: Introduction, Geometric transformation, Plane to plane transformation, Image Mapping models, Mutual Information, Entropy, Registration using MI, Introduction to Stereo Imaging 	10	CO4
5	Image Compression : -Need of Image compression, Data redundancy, Image compression model, Difference between Lossy and Lossless compression, Image compression technique(Huffman, Arithmetic, Run length, LZW coding),Predictive coding(DPCM),JPEG and MPEG compression standard.	08	CO5
6	Image Restoration : -Image degradation/Restoration model, Noise models, Probability density function of important noises (Gaussian, Rayleigh, Gamma, Exponential, Uniform, Salt and Pepper), Restoration in presence of noise by spatial filtering (Mean, Median, Midpoint filter), Periodic noise reduction in frequency domain filtering (Band reject, Band pass, Notch filter), Point spread function, Inverse filtering, Weiner filtering.	05	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books.

- 1. Richard E. Woods, Rafael C. Gonzalez, "Digital Image Processing", Pearson, 3rd edition, 2012.
- 2. Jain A.K, "Fundamentals of Digital Image Processing", Pearson,1st edition, 2015.
- 3. B. Chanda, D. Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2nd edition, 2011.

Reference Books

- 1.M. Sonka, Hlavac, "Image Processing, Analysis, and Machine Vision" Cengage,4th edition, 2014.
- 2. Tamal Bose, "Digital Signal and Image Processing", Wiley, 1st edition, 2003.
- 3. William K. Pratt, "Digital Image Processing", Wiley, 4th edition, 2007.

4. Jayaraman , Veerakumar, Esakkirajan, "Digital Image Processing", McGraw Hill, 1st edition, 2009.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISDLO7032	Digital Control System	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		4	-	-	4	-	-	4

Sub Code	Subject Name	Examination scheme									
		r	Гheory (out of 1	L 00)	Tomm	Pract.				
		Interna	al Assess	sment	End Sem	Term	and O	Oral	Total		
		Test1	Test2	Avg.	Exam	WOLK	Oral				
ISDLO7032	Digital Control System	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	Credits
ISDLO7032	Digital Control System	4
Course Objective	1. To equip the students with the basic knowledge of digital systems	
	2. To obtain the canonical forms of digital control systems	
	3. To test the stability and steady state performance of digital control	
	system.	
	4. To design the controller and observer for digital control systems.	
Course Outcome	Students will be able to	
	1. Understand the advantages and examples of digital control systems.	
	2. Understand the basics of Discretization.	
	3. Represent digital control system as pulse transfer function.	
	4. Determine stability, and steady-state error of discrete time systems.	
	5. Represent given system in different canonical forms.	
	6. Design controller and observer with state space approach.	

Details of Syllabus:

Prerequisite: Knowledge of Linear algebra, Fourier Series, Matrix Algebra, and Nyquist stability criterion.

Module	Contents	Hr	CO
		S	
1	Introduction	10	CO1
	Block diagram of Digital Control System, Advantages & limitations of Digital		
	Control System, comparison of continuous data & discrete data control		
	system, Examples of digital control system, data conversion and quantization,		
	sampling period considerations, sampling as impulse modulation, sampled		
	spectra & aliasing, Reconstruction of analog signals, zero order hold, first		
	order hold.	_	
2	Principles of discretization- impulse invariance, finite difference	06	CO2
	approximation of derivatives, rectangular rules for integration, Bilinear		
	transformation, Mapping between s-plane and z-plane, Discrete PID controller.		
3	Representation of digital control system	06	CO3
	Linear difference equations, pulse transfer function, input output model,		
	examples of first order continuous and discrete time systems, Signal flow		
	graph applied to digital control systems.		
4	Stability of digital control system in z-domain and Time domain analysis	08	CO4
	Jury's method, R.H. criteria, Comparison of time response of continuous data		
	and digital control system, steady state analysis of digital control system,		

	Effect of sampling period on transient response characteristics.		
5	State space analysis	08	CO5
	Discrete time state equations in standard canonical forms, similarity		
	transformation, state transition matrix, solution of discrete time state		
	equation, Discretization of continuous state space model & its solution.		
6	Pole placement and observer designs	10	CO6
	Concept of reachability, Controllability, Constructability & Observability,		
	Design of controller via Pole placement method, dead beat controller design,		
	concept of duality, state observer design.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books.

- 1. M. Gopal, "Digital Contol and State Variable Methods", Tata McGraw Hill, 2nd Edition, March 2003.
- 2. K. Ogata, "Discrete Time Control Systems", Pearson Education Inc., 1995.
- 3. B.C. Kuo, "Digital Control Systems", Saunders College Publishing, 1992.

Reference Books

- 1. Richard J. Vaccaro, "Digital Control", McGraw Hill Inc., 1995.
- 2. Ashish Tewari, "Modern Control System Design with MATLAB", John Wiley, Feb. 2002.
- 3. Joe H. Chow, Dean K. Frederick, "Discrete Time Control Problems using MATLAB", Thomson Learning, 1st Edition, 2003.
- 4. Eronini Umez, "System Dynamics and Control", Thomson Learning, 1999.
- 5. Franklin Powel, "Digital Control of Dynamic Systems", Pearson Education, 3rd Edition, 2003.
- 6. Digital Control Systems vol. I & II Isermann, Narosa publications

Subject	Subject Name	Teaching Scheme			Credits A	ssigned		
Code								
ISDLO7033	Advanced	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Microcontroller	4	-	-	4	-	-	4
	Systems							

Subject	Subject Name	Examination scheme								
Code		Theory Marks(100) Internal Assessment(20)				Term work	Pract. and Oral	Oral	Total	
					End Sem					
		Test1	Test2	Avg.	Exam					
ISDLO7033	Advanced	20	20	20	80	-	-	-	100	
	Microcontroller									
	Systems									

Subject Code	Subject Name	credits
ISDLO7033	Advanced Microcontroller Systems	4
Course objectives	nd working e PIC 18F of software troller with DAC etc. e, software	
Course Outcomes	The students will be able to:	
	 Describe working of PIC 18F Microcontroller Archit Programming model. Discuss programming tools and construct software prassembly or 'C' language. Illustrate the knowledge of operation of integrated components such as (CCP) module, ECCP modul Synchronous Serial Port (MSSP) Module, Enhanced Synchronous, Asynchronous Receiver Transmitter (Analog-To-Digital Converter (A/D) Module. Investigate and construct circuits for interfacing of components with PIC 18F Microcontroller. Design and develop sophisticated application based or Microcontroller such as Temperature controller, PID contr etc. Describe the principle of working of RTOS and related task 	ecture and rograms in hardware le. Master Universal EUSART), peripheral peripheral n PIC 18F roller, RTC

Details of Syllabus:

Prerequisite: Knowledge of digital electronics, microcontrollers, programming skills

Module	Contents	Hrs	СО
			Mapping
1	Introduction to PIC 18F Microcontroller		
	PIC 18F Microcontroller architecture, Hardware PIC 18F Microcontroller family, PIC18F architecture, features PIC18F4520, Block diagram, Oscillator configuration, power saving modes. Memory model, EEPROM and RAM, Program Memory. Hardware multiplier, Interrupt structure.	06	CO1
2	PIC 18F Software	10	CO2
	PIC18F addressing modes, Instruction set, Instruction format, Integrated Development Environment (IDE), Assembling, Debugging, and Executing a program using MPLAB IDE in assembly and embedded C. Data copy operation, Arithmetic operation, Branch and Skip operation, Logic operations, bit Operation, Stack and Subroutine, Code conversion programs and Software Design, Programming practice using assembly & C compiler.		
3	Integrated peripherals of PIC 18F Microcontroller	08	CO3
	I/O ports, Timer, capture/compare/PWM (CCP) module, ECCP module. Master Synchronous Serial Port (MSSP) Module, Enhanced Universal Synchronous, Asynchronous Receiver Transmitter (EUSART), Analog- To-Digital Converter (A/D) Module, Comparator module.		
4	PIC 18F Interfacing	08	CO4
	Interfacing to LCD, 7 segment display, Keyboard, ADC, DAC, relay, DC motor, Stepper Motor.		
5	Case Studies	08	CO5
	PWM Generation, Digital encoder, PID Controller, Temperature controller, RTC, Speed Control of DC motors and similar system design		
6	Introduction to Real Time Operating System	08	CO6
	Introduction to RTOS concept. Tasks and task states, task and data, Semaphores and shared data.		
	Multitasking operating systems, Context switching, task tables, and kernels, Task swapping methods (Time slice, Pre-emption, Co-operative multitasking)		
	Scheduler algorithms (Rate monotonic, Deadline monotonic scheduling) Priority inversion, Tasks, threads and processes, Exceptions, Example of any tiny RTOS.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of

4 to 5 marks will be asked.

- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Mazidi M.A., PIC 18F Microcontroller & Embedded systems, Pearson Education Second edition.
- 2. Ramesh Gaonkar, Fundamentals of Microcontrollers and application in Embedded system (With PIC 18 Microcontroller family) Penram International Publishing.
- Steve Heath, Embedded Systems Design, Newnes publication, Second edition, ISBN 0 7506 5546

Reference Books:

- 1. John B. Peatman, Design with PIC Microcontroller, Pearson Education
- 2. Han-way Huang, PIC Microcontroller: An Introduction to Software & Hardware Interfacing, Thomson Delmar Learning, India Edition.
- 3. David Simon, Embedded Software Primer, Pearson Education, ISBN 81-7808-045-1.
- 4. Tony Givargis, Embedded System Design: A Unified Hardware/Software Introduction, Wiley Student Edition.
- 5. Rajkamal, Embedded Systems, TMH, Second Edition.

Subject code	Subject Name	Teaching	g Scheme (Hrs) Credits Assigned					
ISDLO	ISDLO 7034 Mechatronics	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
7034		4	-	-	4	-	-	4

Subject code				E	xaminatio	on Scheme			
	Subject Name	Г	Theory(ou	ut of 100))		Draat		
		Internal Assessment (out of 20)			End Sem.	Theory	And Oral	Oral	Total
		Test 1	Test 2	Avg.	Exam		Ulai		
ISDLO 7034	Mechatronics	20	20	20	80	-	-	-	100

Subject Code	Subject Name	Credits
ISDLO7034	Mechatronics	4
Course Objectives	 To present architecture of the me To study on broad spectrum the and electrical actuators and t systems. Development of process plan mechatronic systems. 	chatronics system design characteristics of the mechanical heir selection for mechatronic and templates for design of
Course Outcomes	 The students will be able to Describe mechatronics system. Apply the concept of system mod Identify the suitable sensor and a system. Explain feedback and intelligent Learn mechatronics system valid Integrate the components in mech 	deling ctuator for a mechatronic controllers ation hatronics system

Details of Syllabus:

Prerequisites: Signal conditioning, controllers and signals and systems, communication protocols.

Modulo	Contonto	Urc	СО
Wiouuic	Contents	1115.	Mapping
	Introduction to mechatronics systems:		CO1
	Definition and evolution levels of mechatronics, integrated design		
1	issues in mechatronics, key elements of mechatronics, mechatronics	06	
	design process- modeling and simulation, prototyping, deployment /life		
	cycle, advanced approaches in mechatronics.		
	Modeling and Simulation of physical systems:		CO2
	Simulation and block diagrams, Analogies and impedance diagrams,	10	
	electrical system-bridge circuit system, transformer, mechanical		

	translational and rotational systems-sliding block with friction, elevator cable system, mass-damper system, automobile suspension system, mechanical lever system, geared elevator system, electromechanical coupling- DC motor, fluid systems-three tank liquid system, hydraulic actuator and hydraulic pressure regulator.		
	Hardware components:		CO3
	Sensors: motion and position measurement, force, torque and tactile		
	sensors, ultrasonic and range sensors, fiber optic sensors, micro		
	sensors.		
	Actuators: Pneumatic and hydraulic-directional and pressure control		
3	valves, cylinders, servo proportional control valves, rotary actuators,	10	
	Electrical actuation: A.C and DC motors, stepper motors, mechanical		
	Switches and solid state switches.		
	retebets and payal balt and chain drives bearings mechanical espects		
	of motor selection piezoelectric actuators, magnetostrictive actuators		
	memory metal actuators. Programmable Logic Controller		
	Intelligent control:		
	Automatic control methods Artificial Neural Network(ANN) –		CO4
	Modeling, basic model of neuron, characteristics of ANN, perceptron,		001
4	learning algorithms, fuzzy logic – propositional logic, membership	10	
	function, fuzzy logic and fuzzy rule generation, defuzzification, time		
	dependent and temporal fuzzy logic.		
	Components based modular design and system validation:		CO5
5	Components based modular design view, system validation, validation	06	
5	methodology- integrated and design dependence, distributed local	00	
	level, validation schemes, fusion technique		
	Integration:		
	Advanced actuators, consumer mechatronic products, hydraulic		
6	fingers, surgical equipment, industrial robot, autonomous guided		
	vehicle, drilling machine, 3D Plotter, Motion Control Systems-Printing		CO6
	machines, coil winding machines, machine tools, and robotics, IC, and	06	
	PCB manufacturing.		

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 question need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus where in sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Reference Books:

- 1. Devdas Shetty and Richard Kolk, "Mechatronics System Design", Thomson Learning, 2nd reprint, 2001.
- 2. W. Bolton, "Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering", Pearson Education Ltd, 4th edition, 2010.
- 3. Nitaigour Mahalik, "Mechatronics- Principles, Concepts and Applications", Tata McGraw Hill.
- 4. Stamatios V.Kartalopoulos, "Understanding Neural Networks and fuzzy Logic", PHI,3rd reprint, 2013.
- 5. Zhijun Li, Shuzhi Sam Ge, "Fundamentals in Modeling and Control of Mobile Manipulators", March 30, 2017, by CRC Press.
- 6. Sergey Edward Lyshevski, "Mechatronics and Control of Electromechanical Systems", May 30, 2017, by CRC Press.
- 7. Bodgan Wilamowski, J. David Irwin, "Control and Mechatronics", October 12, 2017, by CRC Press.
- 8. Takashi Yamaguchi, Mitsuo Hirata, Justin Chee Khiang Pang, "High-Speed Precision Motion Control", March 29, 2017, by CRC Press.
- 9. David Allan Bradley, Derek Seward, David Dawson, Stuart Burge, "Mechatronics and the Design of Intelligent Machines and Systems", November 17, 2000, by CRC Press.
- 10. Clarence W. de Silva, Farbod Khoshnoud, Maoqing Li, Saman K. Halgamuge, "Mechatronics: Fundamentals and Applications", November 17, 2015, by CRC Press.
- 11. Clarence W. de Silva, "Mechatronics: A Foundation Course", June 4, 2010 by CRC Press.
- 12. GENERAL CATALOGUE 2011 Motion & Drives, OMRON.

Subject	Subject	Teaching Scheme				Credits Assigned			
Code	Name								
ISDLO	Building	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
7035	Automation	4	-	-	4	-	-	4	

Subject	Subject		Examination scheme						
Code	Name	Theory Marks(10			0)	Term	Pract.	Oral	Total
		Internal Assessment(20)			End	work	and		
		Test1	Test2	Avg.	Sem		Oral		
					Exam				
ISDLO	Building	20	20	20	80	-	-	-	100
7035	Automation								

Subject Code	Subject Name	credits
ISDLO7035	Building Automation	4
Course objectives	 To brief students with origin and evolution of automation. To train them with architecture and operation of BAS. To facilitate them for designing automation system for in building. Develop technique for preparation of various documents 	building ntelligent required
Course Outcomes	 The students will be able to: Explain the concept of intelligent building and BAS. Select the hardware and design of HVAC in building a system. Discuss the concept of energy management system. Design and implement the safety system for building. Design security and video management system in BAS. 	automation

Details of Syllabus:

Prerequisite: Fundamental of measurement and control, industrial automation, smart buildings.

Module	Contents	Hrs	CO Mapping
1	 Introduction to intelligent buildings: Definitions of intelligent building, Intelligent architecture and structure, Facilities management vs. intelligent buildings, Technology systems and evolution of intelligent buildings. Introduction to Building Automation System: Features, Characteristics, Drawbacks of Building Automation system. Various Systems of Building Automation – Building Management System, Energy Management System, Security System, Safety System, Video Management System. 	06	CO1

2	HVAC system: Introduction, HVAC, Sensors & Transducers – Temperature, Pressure, Level, Flow, RH. Meaning of Analog & Digital Signals, Valves and Actuators, Valve & Actuator Selection, Various Controllers, Concept of Controller IOs, Std Signals, Signal Compatibility between Controller & Field Devices. AHU – Concept, Components, Working Principle. AC Plant Room – Concept, Components, Refrigeration Cycle Working Principle, Chiller Sequencing, AC Plant Sequencing. Feedback Control Loops, Heat – Types, Heat Transfer Principles, Measurement of Heat Transfer. Psychrometry –Concept, ASHRAE Psychrometric Chart, Meaning of Various Terms – DBT, WBT, ST, RH, DPT, Sensible & Latent Cooling & Heating, Numericals. Job IO Summary Calculation, Controller Sizing, AI to DI Conversion, Cable Selection, Earthing – Meaning, Importance, Panel Earthing, EMI & Tackling EMI. Logic Examples, CL Programming.	12	CO2
3	Energy Management System: Concept, Energy Meters, Types, Meter Networking, Monitoring Energy Parameters, Analysis of Power Quality – Instantaneous Power, Active Power, Reactive Power, Power Factor, Voltage, Current. Effect of Power Quality on Energy Consumption, Energy Reports, Energy Conservation, Importance of Energy Saving.	06	CO3
4	Safety Systems: Introduction, Fire –Meaning, Fire Development Stages, Fire Sensors & Detectors, Detector Placement, Detectors Required For Various Applications. Fire Extinguishing Principles, Fire Extinguishers & Its Classification. Fire Alarm System – Controllers, Components, Features, Concept of Fire Loop & Fire Devices, 2-Wire & 4-Wire Loops, Working Principle, System Description, Pre-alarm, Alarm, Trouble, Fault, Differences, Cable Selection, Installation Guidelines Best Installation Practices, Logic Example. NFPA and IS2189 Stds, System Programming.	08	CO4
5	Security Systems: Introduction, Access Control – Concept, Generic Model, Components, Types, Features, Card Technologies, Protocols, Controllers, Concept of Antipassback, Biometrics, Issues With Biometrics, Cabling, Video Door phone, Intrusion Detection System – Sensors, Working Principle, Access Control System Programming. Video Management: Introduction, CCTV Cameras, CCD Camera Basics, Traditional	10	CO5

	CCTV System, Video Recording, Drawbacks, Digital Video		
	Recording, Features, Functionalities, Digital Vs Analog Recording,		
	Digital Video Management System – Introduction, Features,		
	Advancements & Differences from Earlier Video Techniques,		
	TCP/IP Networking Fundamentals, System Network Load		
	Calculations, Network Design.		
6	Integrated Systems: Introduction, Integration of Building	06	CO6
	Management System, Energy Management System, Safety System,		
	Security Systems & Video Management, Benefits of Integrated		
	Systems, Challenges, Future Prospects of Integrated Systems.		

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Shengwei Wang, Intelligent Buildings and Building Automation, 2009.
- 2. Reinhold A. Carlson Robert A. Di Giandomenico, 'Understanding Building Automation Systems: Direct Digital Control, Energy Management, Life Safety, Security Access Control, Lighting, Building',1st edition (R.S. Means Company Ltd), (1991).

Reference Books:

- 1. Roger W. Haines, "HVAC system Design Handbook", fifth edition.
- 2. National Joint Apprenticeship & Training Committee, Building Automation System Integration With Open Protocols: System Integration With Open Protocols
- 3. John I. Levenhagen and Donald H. Spethmann, HVAC Controls and Systems (Mechanical Engineering), 1992.
- 4. James E.Brumbaugh, "HVAC fundamentals", vol: 1 to 3.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7011	Product Lifecycle Management (abbreviated as PLM)	3	-	3	-	3			

		Examination Scheme						
Course								
code	Course Name	Internal Assessment			End	Exam	Term	Total
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total
					Exam	(Hrs.)		
ILO7011	Product Lifecycle Management	20	20	20	80	03	-	100

	• To familiarize the students with the need, benefits and components of PLM							
Course	• To acquaint students with Product Data Management & PLM strategies							
Objectives	• To give insights into new product development program and gui							
-	for designing and developing a product							
	 To familiarize the students with Virtual Product Development 							
	Student will be able to							
	• Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.							
Course	• Illustrate various approaches and techniques for designing and							
Outcomes	developing products.							
Outcomes	• Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.							
	• Acquire knowledge in applying virtual product development tools for							
	components, machining and manufacturing plan							

Module	Contents	Hours							
1	Introduction to Product Lifecycle Management (PLM): Product	12							
	Lifecycle Management (PLM), Need for PLM, Product Lifecycle								
	Phases, Opportunities of Globalization, Pre-PLM Environment, PLM								
	Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM,								
	Focus and Application, A PLM Project, Starting the PLM Initiative,								
	PLM Applications								
	PLM Strategies: Industrial strategies, Strategy elements, its								
	identification, selection and implementation, Developing PLM Vision								
	and PLM Strategy, Change management for PLM								
2	Product Design: Product Design and Development Process, Engineering	09							
	Design, Organization and Decomposition in Product Design, Typologies								
	of Design Process Models, Reference Model, Product Design in the								
	Context of the Product Development Process, Relation with the								
	Development Process Planning Phase, Relation with the Post design								
	Planning Phase, Methodological Evolution in Product Design,								
	Concurrent Engineering, Characteristic Features of Concurrent								

	Engineering, Concurrent Engineering and Life Cycle Approach, New	
	Product Development (NPD) and Strategies, Product Configuration and	
	Variant Management, The Design for X System, Objective Properties	
	and Design for X Tools, Choice of Design for X Tools and Their Use in	
	the Design Process	
3	Product Data Management (PDM):Product and Product Data, PDM	06
	systems and importance, Components of PDM, Reason for implementing	
	a PDM system, financial justification of PDM, barriers to PDM	
	implementation	
4	Virtual Product Development Tools: For components, machines, and	06
	manufacturing plants, 3D CAD systems and realistic rendering	
	techniques, Digital mock-up, Model building, Model analysis, Modeling	
	and simulations in Product Design, Examples/Case studies	
5	Integration of Environmental Aspects in Product Design: Sustainable	06
	Development, Design for Environment, Need for Life Cycle	
	Environmental Strategies, Useful Life Extension Strategies, End-of-Life	
	Strategies, Introduction of Environmental Strategies into the Design	
	Process, Life Cycle Environmental Strategies and Considerations for	
	Product Design	
6	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and	06
	Framework of Life Cycle Assessment, Phases of LCA in ISO Standards,	
	Fields of Application and Limitations of Life Cycle Assessment, Cost	
	Analysis and the Life Cycle Approach, General Framework for LCCA,	
	Evolution of Models for Product Life Cycle Cost Analysis	

Reference Books:

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, ImmonenAnselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
ILO7012	Reliability Engineering (abbreviated as RE)	3	-	3	-	3		

		Examination Scheme							
Course		Theory							
code	Course Name	Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
ILO7012	Reliability Engineering	20	20	20	80	03	-	100	

Course Objectives	 To familiarize the students with various aspects of probability theory To acquaint the students with reliability and its concepts To introduce the students to methods of estimating the system reliability of simple and complex systems
	• To understand the various aspects of Maintainability, Availability and FMEA procedure
Course Outcomes	 Student will be able to Understand and apply the concept of Probability to engineering problems
	 Apply various reliability concepts to calculate different reliability parameters Estimate the system reliability of simple and complex systems
	Carry out a Failure Mode Effect and Criticality Analysis

Module	Contents	Hours					
1	Probability theory: Probability: Standard definitions and concepts;	10					
	Conditional Probability, Baye's Theorem.						
	Probability Distributions: Central tendency and Dispersion; Binomial,						
	Normal, Poisson, Weibull, Exponential, relations between them and						
	their significance.						
	Measures of Dispersion: Mean, Median, Mode, Range, Mean						
	Deviation, Standard Deviation, Variance, Skewness and Kurtosis.						
2	Reliability Concepts: Reliability definitions, Importance of Reliability,	10					
	Quality Assurance and Reliability, Bath Tub Curve.						
	Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean						
	Time To Failure (MTTF), MTBF, Reliability Functions.						
	Reliability Hazard Models: Constant Failure Rate, Linearly increasing,						
	Time Dependent Failure Rate, Weibull Model. Distribution functions						
	and reliability analysis.						
3	System Reliability	05					
	System Configurations: Series, parallel, mixed configuration, k out of n						
	structure, Complex systems.						
4	Reliability Improvement	10					
	Redundancy Techniques: Element redundancy. Unit redundancy						

	Standby redundancies. Markov analysis.	
	System Reliability Analysis - Enumeration method, Cut-set method,	
	Success	
	Path method, Decomposition method.	
5	Maintainability and Availability	05
	System downtime, Design for Maintainability: Maintenance	
	requirements, Design methods: Fault Isolation and self-diagnostics,	
	Parts standardization and Interchangeability, Modularization and	
	Accessibility, Repair Vs Replacement.	
	Availability – qualitative aspects.	
6	Failure Mode, Effects and Criticality Analysis: Failure mode effects	05
	analysis, severity/criticality analysis, FMECA examples. Fault tree	
	construction, basic symbols, development of functional reliability block	
	diagram, Fau1t tree analysis and Event tree Analysis	

Reference Books:

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
ILO7013	Management Information System (abbreviated as MIS)	3	-	3	-	3		

		Examination Scheme							
Course	Course Name								
code		Interna	Internal Assessment			Exam	Term	Total	
coue		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
ILO7013	Management Information System	20	20	20	80	03	-	100	

	• The course is blend of Management and Technical field.
	• Discuss the roles played by information technology in today's business
	and define various technology architectures on which information
Course Objectives	systems are built
	• Define and analyze typical functional information systems and identify
	how they meet the needs of the firm to deliver efficiency and
	competitive advantage
	• Identify the basic steps in systems development
	• Define and analyze various MIS management responsibilities, including
	planning, budgeting, project management, and personnel management
	• Discuss critical ethical and social issues in information systems
	Student will be able to
	• Explain how information systems Transform Business
	• Identify the impact information systems have on an organization
~	• Describe IT infrastructure and its components and its current trends
Course	• Understand the principal tools and technologies for accessing
Outcomes	information from databases to improve business performance and
	decision making
	• Identify the types of systems used for enterprise-wide knowledge
	management and how they provide value for businesses

Module	Contents	Hours
1	Introduction To Information Systems (IS): Computer Based Information	7
	Systems, Impact of IT on organizations, Importance of IS to Society.	
	Organizational Strategy, Competitive Advantages and IS.	
2	Data and Knowledge Management: Database Approach, Big Data, Data	9
	warehouse and Data Marts, Knowledge Management.	
	Business intelligence (BI): Managers and Decision Making, BI for Data	
	analysis and Presenting Results	

3	Ethical issues and Privacy: Information Security. Threat to IS, and	6
	Security Controls	
4	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping,	7
	Marketing, Operational and Analytic CRM, E-business and E-	
	commerce – B2B B2C. Mobile commerce.	
5	Computer Networks Wired and Wireless technology, Pervasive	6
	computing, Cloud computing model.	
6	Information System within Organization: Transaction Processing	10
	Systems, Functional Area Information System, ERP and ERP support of	
	Business Process.	
	Acquiring Information Systems and Applications: Various System	
	development life cycle models.	

Reference Books:

- 1. Management Information Systems: Kelly Rainer, Brad Prince by Wiley
- 2. Management Information Systems: Managing the Digital Firm (10th Edition). K.C. Laudon and J.P. Laudon, Prentice Hall, 2007.
- 3. Managing Information Systems: Strategy and Organization, D. Boddy, A. Boonstra, Prentice Hall, 2008

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
ILO7014	Design of Experiments (abbreviated as DoE)	3	-	3	-	3		

		Examination Scheme							
Course	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	A	Sem.	Duration	Work	Total	
		Test I	Test 2	Avg.	Exam	(Hrs.)			
ILO7014	Design of Experiments	20	20	20	80	03	-	100	

Course Objectives	1. To understand the issues and principles of Design of Experiments
	(DOE).
	2. To list the guidelines for designing experiments.
	3. To become familiar with methodologies that can be used in conjunction
	with experimental designs for robustness and optimization
	Student will be able to
Course	• Plan data collection, to turn data into information and to make decisions
Outcomes	that lead to appropriate action.
	• Apply the methods taught to real life situations.
	• Plan, analyze, and interpret the results of experiments

Module	Contents	Hours
1	Introduction: Strategy of Experimentation, Typical Applications of	6
	Experimental Design, Guidelines for Designing Experiments, Response	
	Surface Methodology.	
2	Fitting Regression Models: Linear Regression Models, Estimation of	8
	the Parameters in Linear Regression Models, Hypothesis Testing in	
	Multiple Regression, Confidence Intervals in Multiple Regression,	
	Prediction of new response observation, Regression model diagnostics,	
	Testing for lack of fit.	
3	Two-Level Factorial Designs: The 2 ² Design, The 2 ³ Design, The	7
	General 2^k Design, A Single Replicate of the 2^k Design, The Addition of	
	Center Points to the 2 ^k Design, Blocking in the 2 ^k Factorial Design, Split-	
	Plot Designs.	
4	Two-Level Fractional Factorial Designs: The One-Half Fraction of the	7
	2^{k} Design, The One-Quarter Fraction of the 2^{k} Design, The General 2^{k-p}	
	Fractional Factorial Design, Resolution III Designs, Resolution IV and V	
	Designs, Fractional Factorial Split-Plot Designs.	
5	Conducting Tests: Testing Logistics, Statistical aspects of conducting	7
	tests, Characteristics of good and bad data sets, Example experiments,	
	Attribute Vs Variable data sets.	
6	Taguchi Approach: Crossed Array Designs and Signal-to-Noise Ratios,	4
	Analysis Methods, Robust design examples.	

Reference Books:

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Philip J Ross, "Taguchi Technique for Quality Engineering," McGraw Hill.
- 7. Madhav S Phadake, "Quality Engineering using Robust Design," Prentice Hall.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
ILO7015	Operation Research (abbreviated as OR)	3	-	3	-	3		

Course	Course Name	Examination Scheme							
		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Teat 2	Aug	Sem.	Duration	Work	Total	
		Test I	Test 2	Avg.	Exam	(Hrs.)			
ILO7015	Operation Research	20	20	20	80	03	-	100	

 Formulate a real-world problem as a mathematical programming model. Understand the mathematical tools that are needed to solve optimization problems. Use mathematical software to solve the proposed models. Student will be able to Understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand. Understand the relationship between a linear program and its dual, including strong duality and complementary slackness. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 		
Course Objectives• Understand the mathematical tools that are needed to solve optimization problems. • Use mathematical software to solve the proposed models.Student will be able to• Understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand. • Understand the relationship between a linear program and its dual, including strong duality and complementary slackness. • Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.Course OutcomesSolve specialized linear programming problems like the transportation and assignment problems. • Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. • Understand the applications of, basic methods for, and challenges in integer programming • Model a dynamic system as a queuing model and compute important performance measures		• Formulate a real-world problem as a mathematical programming model.
Objectives problems. • Use mathematical software to solve the proposed models. Student will be able to • Understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand. • Understand the relationship between a linear program and its dual, including strong duality and complementary slackness. • Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. • Solve specialized linear programming problems like the transportation and assignment problems. • Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. • Understand the applications of, basic methods for, and challenges in integer programming • Model a dynamic system as a queuing model and compute important performance measures	Course	• Understand the mathematical tools that are needed to solve optimization
 Use mathematical software to solve the proposed models. Student will be able to Understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand. Understand the relationship between a linear program and its dual, including strong duality and complementary slackness. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 	Objectives	problems.
 Student will be able to Understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand. Understand the relationship between a linear program and its dual, including strong duality and complementary slackness. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 		• Use mathematical software to solve the proposed models.
 Understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand. Understand the relationship between a linear program and its dual, including strong duality and complementary slackness. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 		Student will be able to
 Course Outcomes Course Outcomes Outcomes Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 		• Understand the theoretical workings of the simplex method for linear
 Course Outcomes Understand the relationship between a linear program and its dual, including strong duality and complementary slackness. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 		programming and perform iterations of it by hand.
 Course Outcomes Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 		• Understand the relationship between a linear program and its dual,
 Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 		including strong duality and complementary slackness.
 Course Outcomes Course Outcomes Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 		• Perform sensitivity analysis to determine the direction and magnitude of
 Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 	Course	change of a model's optimal solution as the data change.
 and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 	Outcomos	• Solve specialized linear programming problems like the transportation
 Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 	Outcomes	and assignment problems.
 and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 		• Solve network models like the shortest path, minimum spanning tree,
 Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures 		and maximum flow problems.
 integer programming Model a dynamic system as a queuing model and compute important performance measures 		• Understand the applications of, basic methods for, and challenges in
Model a dynamic system as a queuing model and compute important performance measures		integer programming
performance measures		• Model a dynamic system as a queuing model and compute important
		performance measures

Module	Contents	Hours
1	Introduction to Operations Research: Introduction, Historical	2
	Background, Scope of Operations Research , Features of Operations	
	Research, Phases of Operations Research, Types of Operations Research	
	Models, Operations Research Methodology, Operations Research	
	Techniques and Tools, Structure of the Mathematical Model,	
	Limitations of Operations Research	
2	Linear Programming: Introduction, Linear Programming Problem,	6
	Requirements of LPP, Mathematical Formulation of LPP, Graphical	
	method, Simplex Method Penalty Cost Method or Big M-method, Two	
	Phase Method, Revised simplex method, Duality, Primal – Dual	
	construction, Symmetric and Asymmetric Dual, Weak Duality Theorem,	
	Complimentary Slackness Theorem, Main Duality Theorem, Dual	
	Simplex Method, Sensitivity Analysis	
3	Transportation Problem: Formulation, solution, unbalanced	6

	Transportation problem. Finding basic feasible solutions – Northwest	
	corner rule, least cost method and Vogel's approximation method.	
	Optimality test: the stepping stone method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the	
	Problem, Hungarian Method Algorithm, Processing of n Jobs Through	
	Two Machines and m Machines, Graphical Method of Two Jobs m	
	Machines Problem Routing Problem, Travelling Salesman Problem	
4	Integer Programming Problem: Introduction, Types of Integer	6
	Programming Problems, Gomory's cutting plane Algorithm, Branch and	
	Bound Technique. Introduction to Decomposition algorithms.	
5	Queuing models: queuing systems and structures, single server and	6
	multi-server models, Poisson input, exponential service, constant rate	
	service, finite and infinite population	
6	Simulation: Introduction, Methodology of Simulation, Basic Concepts,	4
	Simulation Procedure, Application of Simulation Monte-Carlo	
	Method: Introduction, Monte-Carlo Simulation, Applications of	
	Simulation, Advantages of Simulation, Limitations of Simulation	
7	Dynamic programming. Characteristics of dynamic programming.	4
	Dynamic programming approach for Priority Management employment	
	smoothening, capital budgeting, Stage Coach/Shortest Path, cargo	
	loading and Reliability problems.	
8	Games Theory. Competitive games, rectangular game, saddle point,	4
	minimax (maximin) method of optimal strategies, value of the game.	
	Solution of games with saddle points, dominance principle. Rectangular	
	games without saddle point – mixed strategy for 2 X 2 games.	
9	Inventory Models: Classical EOQ Models, EOQ Model with Price	4
	Breaks, EOQ with Shortage, Probabilistic EOQ Model,	

Reference Books:

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
ILO7016	Cyber Security and Laws (abbreviated as CSL)	3	-	3	-	3		

	Course Name	Examination Scheme								
Course										
code		Internal Assessment			End	Exam	Term	Total		
couc		Toot 1	Toot 2	Ava	Sem.	Duration	Work	TOtal		
		Test I	Test 2	Avg.	Exam	(Hrs.)				
ILO7016	Cyber Security and Laws	20	20	20	80	03	-	100		

Course	• To understand and identify different types cyber crime and cyber law					
Objectives	 To recognized Indian IT Act 2008 and its latest amendments 					
Objectives	• To learn various types of security standards compliances					
	Student will be able to					
	• Understand the concept of cyber crime and its effect on outside world					
Course	• Interpret and apply IT law in various legal issues					
Outcomes	• Distinguish different aspects of cyber law					
	• Apply Information Security Standards compliance during software					
	design and development					

Module	Contents	Hours
1	Introduction to Cybercrime: Cybercrime definition and origins of the	4
	world, Cybercrime and information security, Classifications of	
	cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective	
	on cybercrimes.	
2	Cyber offenses & Cybercrime: How criminal plan the attacks, Social	10
	Engg, Cyber stalking, Cybercafé and Cybercrimes, Botnets, Attack	
	vector, Cloud computing, Proliferation of Mobile and Wireless Devices,	
	Trends in Mobility, Credit Card Frauds in Mobile and Wireless	
	Computing Era, Security Challenges Posed by Mobile Devices, Registry	
	Settings for Mobile Devices, Authentication Service Security, Attacks	
	on Mobile/Cell Phones, Mobile Devices: Security Implications for	
	Organizations, Organizational Measures for Handling Mobile, Devices-	
	Related Security Issues, Organizational Security Policies and Measures	
	in Mobile Computing Era, Laptops	
3	Tools and Methods Used in Cyberline: Phishing, Password Cracking,	6
	Keyloggers and Spywares, Virus and Worms, Steganography, DoS and	
	DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless	
	Networks, Phishing, Identity Theft (ID Theft)	
4	The Concept of Cyberspace: E-Commerce, The Contract Aspects in	8
	Cyber Law ,The Security Aspect of Cyber Law ,The Intellectual	
	Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law	
	, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law,	
	Legal Framework for Electronic Data Interchange Law Relating to	

	Electronic Banking, The Need for an Indian Cyber Law					
5	Indian IT Act.: Cyber Crime and Criminal Justice : Penalties,	8				
	Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its					
	Amendments					
6	Information Security Standard compliances	6				
	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.					

Reference Books:

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7017	Disaster Management and Mitigation Measures (abbreviated as DMMM)	3	-	3	-	3			

		Examination Scheme								
Course										
code	Course Name	Internal Assessment			End	Exam	Term	Total		
coue		Test 1	Test 2	Avg.	Sem.	Duration	Work	TOtal		
		Test I			Exam	(Hrs.)				
	Disaster									
ILO7017	Management and	20	20	20	80	03		100		
	Mitigation	20	20	20	80	03	-	100		
	Measures									

Course Objectives• To understand the various types of disaster occurring around the world • To identify extent and damaging capacity of a disaster • To study and understand the means of losses and methods to overcome /minimize it. • To understand role of individual and various organization during and after disaster • To know warning systems, their implementation and based on this to initiate training to a laymen • To understand the emergency government response structures before, during and after disasterCourse OutcomesStudent will be able to • Understand natural as well as manmade disaster and their extent and possible effects on the economy. • Planning of national importance structures based upon the previous history. • Understand government policies, acts and various organizational structure associated with an emergency.		
Course Objectives• To study and understand the means of losses and methods to overcome /minimize it.Course Objectives• To understand role of individual and various organization during and after disaster• To understand role of individual and various organization during and after disaster• To know warning systems, their implementation and based on this to initiate training to a laymen• To understand application of GIS in the field of disaster management• To understand the emergency government response structures before, during and after disasterStudent will be able to• Understand natural as well as manmade disaster and their extent and possible effects on the economy.• Planning of national importance structures based upon the previous history.• Understand government policies, acts and various organizational structure associated with an emergency.• Know the simple do's and don'ts in such extreme events and act accordingly		 To understand the various types of disaster occurring around the world To identify extent and damaging capacity of a disaster
Course Objectives• To study and understand the means of losses and methods to overcome /minimize it.Course Objectives• To understand role of individual and various organization during and after disaster• To know warning systems, their implementation and based on this to initiate training to a laymen• To understand application of GIS in the field of disaster management• To understand the emergency government response structures before, during and after disasterStudent will be able to• Understand natural as well as manmade disaster and their extent and possible effects on the economy.• Planning of national importance structures based upon the previous history.• Understand government policies, acts and various organizational structure associated with an emergency.• Know the simple do's and don'ts in such extreme events and act accordingly		• To identify extent and damaging capacity of a disaster
Course Objectives• To understand role of individual and various organization during and after disaster• To know warning systems, their implementation and based on this to initiate training to a laymen• To understand application of GIS in the field of disaster management• To understand the emergency government response structures before, during and after disaster• Student will be able to• Understand natural as well as manmade disaster and their extent and possible effects on the economy.• Planning of national importance structures based upon the previous history.• Understand government policies, acts and various organizational structure associated with an emergency.• Know the simple do's and don'ts in such extreme events and act accordingly		• To study and understand the means of losses and methods to overcome /minimize it.
Objectives • To know warning systems, their implementation and based on this to initiate training to a laymen • To understand application of GIS in the field of disaster management • To understand the emergency government response structures before, during and after disaster Student will be able to • Understand natural as well as manmade disaster and their extent and possible effects on the economy. • Planning of national importance structures based upon the previous history. • Understand government policies, acts and various organizational structure associated with an emergency. • Know the simple do's and don'ts in such extreme events and act accordingly	Course	• To understand role of individual and various organization during and after disaster
 To understand application of GIS in the field of disaster management To understand the emergency government response structures before, during and after disaster Student will be able to Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 	Objectives	• To know warning systems, their implementation and based on this to initiate training to a laymen
 To understand the emergency government response structures before, during and after disaster Student will be able to Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 		• To understand application of GIS in the field of disaster management
Course Outcomes Student will be able to • Understand natural as well as manmade disaster and their extent and possible effects on the economy. • Planning of national importance structures based upon the previous history. • Understand government policies, acts and various organizational structure associated with an emergency. • Know the simple do's and don'ts in such extreme events and act accordingly		• To understand the emergency government response structures before
Course Student will be able to Outcomes Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly		• To understand the emergency government response structures before,
 Student will be able to Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 		during and after disaster
 Understand natural as well as manmade disaster and their extent and possible effects on the economy. Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 		Student will be able to
 Course Outcomes Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 		• Understand natural as well as manmade disaster and their extent and possible effects on the economy
 Planning of national importance structures based upon the previous history. Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 		possible effects on the economy.
 Outcomes Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 	Course	• Planning of national importance structures based upon the previous
 Understand government policies, acts and various organizational structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 	Outcomos	history.
 structure associated with an emergency. Know the simple do's and don'ts in such extreme events and act accordingly 	Outcomes	• Understand government policies, acts and various organizational
• Know the simple do's and don'ts in such extreme events and act accordingly		structure associated with an emergency.
		• Know the simple do's and don'ts in such extreme events and act accordingly

Module	Contents	Hours
1	Introduction: Definition of Disaster, hazard, global and Indian	03
	scenario, general perspective, importance of study in human life,	
	Direct and indirect effects of disasters, long term effects of disasters.	
	Introduction to global warming and climate change.	
2	Natural Disaster and Manmade disasters: Natural Disaster: Meaning	06
	and nature of natural disaster, Flood, Flash flood, drought, cloud	
	burst, Earthquake, Landslides, Avalanches, Volcanic eruptions,	
	Mudflow, Cyclone, Storm, Storm Surge, climate change, global	
	warming, sea level rise, ozone depletion . Manmade Disasters:	

	Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.	
3	Disaster Management, Policy and Administration: Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	06
4	Institutional Framework for Disaster Management in India: Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
5	Financing Relief Measures: Ways to raise finance for relief expenditure, Role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. International relief aid agencies and their role in extreme events.	09
6	Preventive and Mitigation Measures: Pre-disaster, during disaster and post-disaster measures in some events in general, Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication. Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. Do's and don'ts in case of disasters and effective implementation of relief aids.	06

Reference Books:

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications

7. Concepts and Techniques of GIS –C.P. Lo Albert, K.W. Yonng – Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course	Course Name	Teaching (Contac	g Scheme et Hours)	Credits Assigned					
Code		Theory	Tutorial	Theory	Tutorial	Total			
ILO7018	Energy Audit and Management (abbreviated as EAM)	3	-	3	-	3			

		Examination Scheme								
Course	Course Name									
code		Internal Assessment			End	Exam	Term	Total		
		Test 1	Teat 2	Ava	Sem.	Duration	Work	TOtal		
		Test I	Test 2	Avg.	Exam	(Hrs.)				
ILO7018	Energy Audit and Management	20	20	20	80	03	-	100		

Course Objectives	 To understand the importance of energy security for sustainable development and the fundamentals of energy conservation. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management To relate the data collected during performance evaluation of systems
	for identification of energy saving opportunities
	Student will be able to
	• To identify and describe present state of energy security and its
	importance.
	• To identify and describe the basic principles and methodologies adopted
Course	in energy audit of an utility.
Outcomes	• To describe the energy performance evaluation of some common
Outcomes	electrical installations and identify the energy saving opportunities.
	• To describe the energy performance evaluation of some common
	thermal installations and identify the energy saving opportunities
	• To analyze the data collected during performance evaluation and
	recommend energy saving measures

Module	Contents	Hours
1	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy	4
	Sector Reforms, Energy Security, Energy Conservation and its	
	Importance, Energy Conservation Act-2001 and its Features. Basics of	
	Energy and its various forms, Material and Energy balance	
2	Energy Audit Principles: Definition, Energy audit- need, Types of	8
	energy audit, Energy management (audit) approach-understanding	
	energy costs, Bench marking, Energy performance, Matching energy use	
	to requirement, Maximizing system efficiencies, Optimizing the input	
	energy requirements, Fuel and energy substitution. Elements of	
	monitoring& targeting; Energy audit Instruments; Data and information-	
	analysis. Financial analysis techniques: Simple payback period, NPV,	
	Return on investment (ROI), Internal rate of return (IRR)	

3	Energy Management and Energy Conservation in Electrical	10
	System: Electricity billing, Electrical load management and maximum	
	demand Control; Power factor improvement, Energy efficient	
	equipments and appliances, star ratings. Energy efficiency measures in	
	lighting system. Lighting control: Occupancy sensors daylight	
	integration and use of intelligent controllers	
	integration, and use of intenigent controners.	
	Energy conservation opportunities in: water pumps, industrial drives,	
	induction motors, motor retrofitting, soft starters, variable speed drives.	
4	Energy Management and Energy Conservation in Thermal	10
	Systems: Review of different thermal loads; Energy conservation	
	opportunities in: Steam distribution system, Assessment of steam	
	distribution losses, Steam leakages, Steam trapping, Condensate and	
	flash steam recovery system.	
	General fuel economy measures in Boilers and furnaces, Waste heat	
	recovery use of insulation- types and application. HVAC system:	
	Coefficient of performance, Capacity, factors affecting Refrigeration	
5	and Air Conditioning system performance and savings opportunities	1
5	techniques Case studies based on: Motors and variable speed drive	4
	numps HVAC system calculations: Lighting System: Installed Load	
	Efficacy Ratio (ILER) method. Financial Analysis.	
6	Energy conservation in Buildings: Energy Conservation Building	3
_	Codes (ECBC): Green Building, LEED rating, Application of Non-	
	Conventional and Renewable Energy Sources	

Reference Books:

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7019	Development Engineering (abbreviated as DE)	3	-	3	-	3			

		Examination Scheme							
Course	Course Name								
Course		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Test)	A	Sem.	Duration	Work	Total	
		Test I	Test 2	Avg.	Exam	(Hrs.)			
II 07010	Development	20	20	20	80	03		100	
IL07019	Engineering	20	20	20	80	05	-	100	

Course Objectives	• To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural
	• To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas
	 An exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life' in the
	 To understand the Nature and Type of Human Values relevant to
	Student will be able to
	Apply knowledge for Rural Development
Course	• Apply knowledge for Management Issues.
Outcomes	• Apply knowledge for Initiatives and Strategies.
Outcomes	• Develop acumen for higher education and research.
	• Master the art of working in group of different nature.
	• Develop confidence to take up rural project activities independently.

Module	Contents	Hours
1	Introduction to Rural Development Meaning, nature and scope of	08
	development; Nature of rural society in India; Hierarchy of settlements;	
	Social, economic and ecological constraints for rural development.	
	Roots of Rural Development in India Rural reconstruction and	
	Sarvodaya programme before independence; Impact of voluntary effort	
	and Sarvodaya Movement on rural development; Constitutional	
	direction, directive principles; Panchayati Raj - beginning of planning	
	and community development; National extension services.	
2	Post-Independence rural Development Balwant Rai Mehta Committee -	04
	three tier system of rural local. Government; Need and scope for	
	people's participation and Panchayati Raj; Ashok Mehta Committee -	
	linkage between Panchayati Raj, participation and rural development.	
3	Rural Development Initiatives in Five Year Plans Five Year Plans and	06
	Rural Development; Planning process at National, State, Regional and	
	District levels; Planning, development, implementing and monitoring	

	organizations and agencies; Urban and rural interface - integrated	
	approach and local plans; Development initiatives and their	
	convergence; Special component plan and sub-plan for the weaker	
	section; Micro-eco zones; Data base for local planning; Need for	
	decentralized planning; Sustainable rural development.	
4	Post 73rd Amendment Scenario 73rd Constitution Amendment Act,	04
	including - XI schedule, devolution of powers, functions and finance;	
	Panchayati Raj institutions - organizational linkages; Recent changes in	
	rural local planning; Gram Sabha - revitalized Panchayati Raj;	
	Institutionalization; resource mapping, resource mobilization including	
	social mobilization; Information Technology and rural planning; Need	
	for further amendments.	
5	Values and Science and Technology Material development and its	10
	values; the challenge of science and technology; Values in planning	
	profession, research and education. Types of Values Psychological	
	values — integrated personality; mental health; Societal values — the	
	modern search for a good society; justice, democracy, rule of law, values	
	in the Indian constitution; Aesthetic values — perception and enjoyment	
	of beauty; Moral and ethical values; nature of moral judgment; Spiritual	
	values; different concepts; secular spirituality; Relative and absolute	
	values; Human values— humanism and human values; human rights;	
	human values as freedom, creativity, love and wisdom.	
6	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of	04
	responsibility; Work ethics; Professional ethics; Ethics in planning	
	profession, research and education	

Reference Books:

1. ITPI, Village Planning and Rural Development, ITPI, New Delhi

- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi

4. Planning Commission, Five Year Plans, Planning Commission

5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi

6. Planning Guide to Beginners

7. Weaver, R.C., The Urban Complex, Doubleday.

8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.

9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.

10. Watson, V. , Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and

Practice, Vol. 4, No.4, pp.395 - 407

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Subject Code	Subject Name	Tea	ching Sch	eme		Credits A	Assigned	
ISL701	Industrial Process Control-Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Practice	-	2	-	-	1	-	1

Sub Code	Subject Name	Examination scheme								
couc		Internal Assessment			End Sem	Term work	Pract. and	Oral	Total	
		Test 1	Test 2	Avg.	Exam	WOIR	Oral			
ISL701	Industrial Process Control –Lab Practice	-	-	-	-	25	-	25	50	

Subject Code	Subject Name	credits				
ISL701	Industrial Process Control-Lab Practice	1				
Course objectives	 ectives 1. To impart the knowledge of different industrial unit operations. 2. To make them capable to design and develop instrumentation and control scheme for industrial processes. 3. To give them exposure to work in process industry. 4. To explain students about hazardous area and safety design system. 					
Course Outcomes	The students will be able to					
	1. Explain working and control of various heat trans operations	fer unit				
	2. Explain working and control of various heat and mass unit operations	transfer				
	3. Explain the miscellaneous process equipment and their co	ontrol				
	4. Describe the processes of various continuous industries and instrumentation involved in them.	process				
	5. Describe the processes of various batch process indus instrumentation involved in them.	tries and				
	6. Classify hazardous areas in the industry.					

Syllabus: Same as that of Subject ISC701 Industrial Process Control.

List of Laboratory Experiments/Assignments:

Sr.	Detailed Content	CO Mapping
NO.		
1	Demonstrate the operation and control scheme of Heat exchanger	C01
2	Learn working of various Unit Operations (Boilers/furnace / Distillation column etc.) using online learning resources.	CO2
3	Demonstrate the reactor control system.	CO2
4	Demonstrate the operation & control scheme of a compressor.	CO3
5	Prepare a report on any one industry.	CO4 and CO5
6	Develop some charts on hazardous area classification.	CO6
7	Assignment/Exercise on heat transfer unit operations- heat exchanger, boilers	CO1
8	Assignment/Exercise on heat transfer unit operations-evaporator, furnace	CO1
9	Assignment/Exercise on heat and mass transfer unit operations-Distillation, dryers	CO2
10	Assignment/Exercise on heat and mass transfer unit operations-Crystallization, reactor	CO2
11	Assignment/Exercise on miscellaneous equipment	CO3
12	Assignment/Exercise on hazardous area classification	CO6
13	Assignment/Exercise on continuous process industries	CO4
14	Assignment/Exercise on batch process industries	CO5

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

• Industry visit is advised to understand the unit operations, industrial processes and their control.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignm	ents)	: 10 Marks
Laboratory work (programs / journal)	:	10 Marks
Attendance	:	5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned				
ISL702	Biomedical Instrumentation - Lab Practice	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
		-	2	-	-	1	-	1	

Sub Code	Subject Name	Examination scheme Internal Assessment End Som				Term work	Pract. And oral	Oral	Total
		Test1	Test2	Avg.	Exam				
ISL702	Biomedical Instrumentation- Lab Practice	-	-	-	-	25	-	25	50

Subject Code	Subject Name	Credits
ISL702	Biomedical Instrumentation- Lab Practice	1
Course objective	 To make students perform experiments based on the principle and various Biomedical Instruments used for Bio-potential measuremer To develop skills in the design of various biomedical instrum in diagnosis and life-support. 	working of hts ments used
Course Outcome	 Students will be able To measure and identify various Bio-potentials with their specifica To observe and plot various Physiological parameters specifications. To measure the various cardiovascular parameters by Designing circuitry. To realise the circuitry of different life support instruments, like defibrillator. To distinguish between the various medical imaging tech comparing, principle and concept involved in each of the techniqu To describe the significance of electrical safety in biomedical mean 	ations. with their g the related pacemaker, hniques by e. surement.

Syllabus: Same as that of Subject ISC702 Biomedical Instrumentation.

List of Suggested Laboratory Experiments:

Sr. No.	Detailed Content	CO Mapping
1	Demonstration and working of instruments like ECG and PCG.	CO1

2	Demonstration and working of instruments like EMG and EEG.	CO1
3	Study of electrodes for various biomedical applications.	CO1
4	To measure Blood pressure by indirect method.	CO2
5	To study Pacemaker and various waveforms or Design and implement pacemaker circuit.	CO4
6	To study Defibrillator and voltage waveforms or Design and implement Defibrillator circuit.	CO4
7	Design of ECG amplifier and testing of gain frequency response with weak input signal.	CO3
8	To design and implement ECG signal conditioning circuits with different parameter.	CO3
9	To design and implement EMG Quantification circuit.	CO2
10	To study Hemodialysis, Heart/Lung machine based models.	CO4
11	ECG simulation on PC / Microcontroller.	CO3
12	Study of working of pulse oxymeter / Heart rate meter.	CO3
13	To study respiration rate meter / respiration parameter measurement.	CO2
14	Study on Medical Imaging Techniques	CO5
15	Study on Electrical Safety	CO6

Any other additional experiment based on syllabus which will help students to understand topic/concept

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 08 experiments from the above given list and 02 assignments from imaging techniques module and electrical safety module.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/Assignments) : 10 Marks Laboratory work (programs / journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Tea	ching sch	eme	Credit assigned			
ISL703	Industrial Automation-	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Lab Practice	-	02	-	-	1	-	1

		Examination scheme									
Sub Code	Subject Name	Internal Assessment Test1 Test2 Avg.			End sem exam	Term work	Pract. And oral	Oral	Total		
ISL703	Industrial Automation- Lab Practice	-	-	-	-	25	-	25	50		

Subject Code	Subject Name	Credits							
ISL703	Industrial Automation -Lab Practice	1							
Course objective	1. To give the students fundamentals of automation ar	nd various							
	automation systems used in industry such as PLC, DCS, and	l SCADA.							
	2. To impart the knowledge about the architecture, workin	g of PLC,							
	DCS and SCADA								
	3. To make the students capable to apply knowledge to identif	y hardware							
	and software requirements of PLC, DCS and SCADA								
	4. To give the students a comprehension of the aspects related	To give the students a comprehension of the aspects related to Safety							
	Instrumented system (SIS).	Instrumented system (SIS).							
Course Outcome	The students will be able to								
	1. Describe automation, need, importance and applications in indu								
	2. Identify components of PLC, and develop PLC lac	lder using							
	instructions of PLC and design PLC based application	by proper							
	selection and sizing criteria								
	3. Explain evolution and architecture of DCS, hierarchical	control in							
	DCS, programming DCS through Function Block Diagr	am (FBD)							
	method.								
	4. Describe SCADA architecture, communication in SC	ADA and							
	develop any application based on SCADA along with	GUI using							
	SCADA software.								
	5. Explain database and alarm management system								
	6. Recognize the need of SIS and describe risk reduction meth	ods.							

Syllabus: Same as that of Subject ISC703 Industrial Automation.

List of Laboratory Experiments/Assignments:

Sr. No.	Detailed Content	CO Mapping
1.	Processing of sensor signals by the PLC to drive various end effectors such as pneumatic/electric/hydraulic	CO2
2.	PLC programs for process control applications (minimum 4 nos)	CO2
3.	DCS programming using Function block diagram method	CO3
4.	GUI development for any one application using SCADA software.	CO4
5.	Assignment/Exercise based on Automation Fundamentals	CO1
6.	Assignment/Exercise based on DCS	CO3
7.	Assignment /Exercise based on SCADA	CO4
8.	Assignment/Exercise based on Database and Alarm management	CO5
9.	Assignment/Exercise based on Safety Instrumented System	CO6

Any other additional experiment based on syllabus which will help students to understand topic/concept

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 4 experiments and 4 assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/Assignments): 10 Marl
--

- Laboratory work (programs / journal) : 10 Marks
- Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned				
	Image	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ISL704	Processing-Lab Practice	-	2	-	-	1	-	1	

Sub	Subject Name	Examination scheme								
Code						Term	Pract.	Oral	Total	
		Internal Assessment			End sem	work	and			
					Exam		Oral			
		Test1	Test2	Avg.						
ISL704	Image	-	-	-	-	25	-	25	50	
	Processing-Lab									
	Practice									

Subject Code	Subject Name	credits						
ISL704	Image Processing-Lab Practice	1						
Course objectives	1. Familiarize with computer simulation software for Image processing and its							
	analysis and basic Image operations.							
	2. To Study the Fourier and Cosine transformation of images in the simulation							
	platform and display the result							
	3. Write advanced image processing algorithms such as Image enhancement,							
	Image restoration by using computer simulations.							
	4. Develop program for extract the features of images by segmentation and image							
	morphology.							
Course	Students will be able to -							
Outcomes	1. Simulate various operations on Images.							
	2. Perform Discrete Fourier transform and Discrete Cosine transform	n on Image.						
	3. Perform Image enhancement techniques.	C						
	4. Perform morphological operations on images and display the result	lt.						
	5. Implement Image compression techniques.							
	6. Implement restoration techniques on degraded images.							

Syllabus same as that of subject ISDLO7031 Image Processing

List of Laboratory Experiments:

Sr. No.	Detailed Contents	CO
		mapping
1	Basic Image operations such as Reading, Displaying, Writing, Flipping,	CO1
	Cropping Images. Introduction to M file, Basic Matrix operations.	
2	Spatial transformation of images like Translation, Rotation and Scaling.	CO1
3	Compute and visualize 2-D DFT, DCT of Images.	CO2

4	Point processing operations like Image negative, brightness adjustment, contrast stretching, Threshold, Log transformation, Power law transformations, Gray level slicing with or without background.	CO3
5	Image Enhancement techniques by arithmetic and logic operations.	CO3
6	Generate and plot Image Histogram and Histogram Equalization.	CO4
7	Image Analysis and interpret the result by using Spatial filter.	CO5
8	Image smoothing and Sharpening in frequency domain.	CO5
9	Implementing Image acquisition and degradation process by different noises and	CO5
10	Edge detection by using Robert operator, Prewitt operator, Sobel operator and compare the result.	CO6
11	Morphological operation of Images like Dilation, Erosion, Opening, Closing, Boundary Detection.	CO6
12	Image segmentation such as point, line, edge detection.	CO6

Any other additional experiments based on syllabus which will help students to understand topic/concept.

Note: Students can use any Computer simulation software programing platform like MATLAB/SCILAB.

Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of Eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned				
ISL704	Digital Control System-Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Practice	_	2	-	_	1	-	1	

					Examinatio	on scheme			
Sub Code					1	Term	Pract.		
	Subject Name	Internal Assessment			End sem Exam	work	and Oral	Oral	Total
		Test1	Test2	Avg.					
	Digital Control								
ISL704	System- Lab	-	-	-	-	25	-	25	50
	Practice								

Subject Code	Subject Name	Credits
ISL704	Digital Control System-Lab Practice	1
Course objective	1. The students should be able to determine response of ZOH and FO	Η
	2. The students should be able to descretize continuous data system.	
	3. The students will be able to represent given system into different ca	anonical
	form.	
	4. The students should able to determine state transition matrix	
	5. Students can be able to design controller and observer	
Course Outcome	Students will be able to -	
	1. Understand the difference in response with reconstruction due to 2 FOH.	ZOH and
	2. Discretize the analog systems and signals with different methods	
	3. Design controller and observer for the given system.	
	4. Demonstrate their knowledge to obtain different canonical forms an and verify using simulation software.	alytically
	5. Determine state transition matrix using simulation software and v results analytically	verify the
	6. Measure and record the experimental data, analyze the results, and formal laboratory report.	prepare a

Syllabus same as that of subject ISDLO7032 Digital Control System

List of Laboratory Experiments:

C. No	Deteiled Contents	СО
Sr. NO.	Detailed Contents	Mapping
1	To determine response of zero order hold and first order hold using simulation software	CO1
2	Mapping from S- plane to Z-plane analytically and verification using simulation software	CO2
3	Discretization of continuous data system using i) Step invariance method, ii) Impulse invariance method, and iii) Bilinear transformations, analytically and verification using simulation software	CO3
4	To represent given system in different canonical forms, analytically and verification using simulation software	CO4
5	To determine pulse transfer function of a given system analytically and its verification using simulation software	CO4,CO6
6	Determination of state transition matrix analytically and its verification using simulation software	CO5,CO6
7	To check controllability and observability of a given system analytically and verify the result using simulation software.	CO3,CO6
8	To design the controller by any method	CO3
9	To design an observer by any method	CO3

Any other additional experiments based on syllabus which will help students to understand topic/concept.

Note: Student can use simulation software such as MATLAB, MATHCAD, SCILAB or any other open source software.

Oral Examination:

Oral examination will be based on entire syllabus

Term Work:

Term work shall consist of Eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject Code	Subject Name	Teacl	hing Schei	me		Credits A	Assigned	
ISL704	Advanced Microcontroller	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Systems- Lab Practice	-	2	-	-	1	-	1

Sub	Subject Name	Examination scheme							
Code		Internal Assessment			End	Term	Pract	Oral	Total
		Test 1	Test 2	Avg.	Sem	work	and		
					Exam		Oral		
ISL704	Advanced	-	-	-	-	25	-	25	50
	Microcontroller								
	Systems- Lab								
	Practice								

Subject Code	Subject Name	Credits
ISL704	Advanced Microcontroller Systems- Lab Practice	1
Course objectives	 To explain the fundamentals of PIC 18F Microcontroller and system. To discuss and explain the integrated hardware of the PIC 18F Mic 3. To illustrate various programming tools and development of assembly and higher level language. To examine and design, interfacing of PIC 18F Microcontroller peripheral devices such as LCD, keyboard, ADC, DAC etc. To design applications using learned concepts of hardware interfacing. To describe the working of RTOS and related tasks. 	working of the crocontroller software using er with different e, software and
Course Outcomes	 The students will be able to: Simulate, Analyze and develop programs using assembly lange Simulate, Analyze and develop programs using embedded C Develop program to use PIC18 integrated peripherals. Design and Develop programs for interfacing of external components with PIC 18F Microcontroller. Design and develop sophisticated application using the P peripherals and external peripherals Show the uses and features of RTOS 	uage. ernal peripheral PIC18 integrated

Syllabus: Same as that of Subject ISDLO7033 Advanced Microcontroller Systems.

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
1.	To develop assembly program	C01
2.	To develop embedded C program	CO2
3.	To develop a program for generating square wave on port pin with and without timer.	CO3
4.	To develop a program for interfacing 7 segments displays with PIC18	CO4
5.	To develop a program for interfacing LCD display with PIC18	CO4
б.	To develop a program for interfacing keyboard with PIC18	CO4
7.	To develop a program for Serial Communication with PC.	CO3

8.	To develop a program for interfacing DAC and its application.	CO4
9.	To develop a program for implementing RTC.	CO3
10.	To develop a program for Speed control of DC Motor	C05
11.	To develop a program for temperature measurement.	C05
12.	To develop a program for Stepper motor control	C05
13.	To develop a program for implementing PID controller.	C05
14.	Assignment on understanding operation of integrated peripherals	CO5
15.	Case study on various types of RTOS	CO6

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments): 10 Marks

Laboratory work (programs / journal) : 10 Marks

Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

Sub code	Subject Name	Teaching Scheme (Hrs)			Subject NameTeaching Scheme (Hrs)Credits Assig				ssigned	
ISL704	Mechatronics	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
		-	2	-	-	1	-	1		

Sub code	Subject Name	Examination Scheme									
		1	Theory(ou	ıt of 100)		Droot				
		Internal Assessment (out of 20)			End Sem. Theory	And Oral	Oral	Total			
		Test 1	Test 2	Avg.	Exam		Orai				
ISL704	Mechatronics	-	-	-	-	25	-	25	50		

Subject Code	Subject Name	Credits				
ISL704	Mechatronics Lab	1				
Course Objectives	 To present architecture of the mechatronics system design To study on broad spectrum the characteristics of the mechanical and electrical actuators and their selection for mechatronic systems. Development of process plan and templates for design of mechatronic systems 					
Course Outcomes	The students will be able to 1. Apply the concept of system modeling 2. Calculate performance characteristics of sensors 3. Learn the working of actuators for a mechatronic system. 4. Design feedback and intelligent controllers 5. Describe mechatronics system validation 6. Integrate the components in mechatronics system					

Syllabus: Same as that of Subject ISDLO7034 Mechatronics.

List of Laboratory Experiments/ Assignments:

Sr.	Detailed Content	CO Mapping
No.		
1	Modeling and simulation of basic electrical, hydraulic and pneumatic systems	CO1
	using any virtual instrumentation software like LabVIEW.	
2	Calculate static and dynamic characteristics of position/force/tactile sensors	CO2
3	Design of circuits with logic sequence using Electro pneumatic trainer kits.	CO3
4	Simulation of basic Hydraulic, Pneumatic and Electric circuits using any software	CO3

F	Electro proventio applications using DLC	CO^2
5	Electro pneumatic applications using PLC	COS
6	Speed Control of AC & DC drives	CO3
7	Servo controller interfacing for DC motor	CO4
8	PID controller interfacing	CO4
9	Implementation of fuzzy controller for level or temperature control	CO4
10	Stepper motor interfacing with Micro controller (i) Full step resolution (ii) half step resolution	CO4
11	Assignment on Components based modular design and system validation	CO5
12	Computerized data logging system with control for process variables like pressure, flow and temperature.	CO6
13	Case study on any one mechatronics system	CO6

Any other additional experiments / case studies based on syllabus which will help students to understand topic/concept.

**Industry visit is advised to understand the Mechatronics subject.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum seven experiments and 01 case study.

The distribution of marks for term work shall be as follows:

Laboratory	work	(Exper	iments/	assignmen	ts):	: 10 Marks
Laboratory	work	(progra	ams / jo	urnal)	:	: 10 Marks
Attendance	;					5 Marks
1				C		

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
ISL704	Building Automation-	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Lab Practice	-	2	-	-	1	-	1

Sub	Subject Name		Examination scheme							
Code		Internal Assessment			End	Term	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	Sem Exam	work	and Oral			
ISL704	Building Automation- Lab Practice	-	-	-	-	25	-	25	50	

Subject Code	Subject Name	credits					
ISL704	Building Automation Lab Practice	1					
Course objectives	 To brief students with origin and evolution of building automation. To train them with architecture and operation of BAS. To facilitate them for designing automation system for intelligent building. Develop technique for preparation of various documents required for design requirement of safety building. 						
Course Outcomes	 The students will be able to: 1. Explain the concept of intelligent building and BAS. 2. Select the hardware and design of HVAC in building automation system. 3. Discuss the concept of energy management system. 4. Design and implement the safety system for building. 5. Design security and video management system for building. 6. Design and integrate the different system in BAS. 						

Syllabus: Same as that of Subject ISDLO7035 Building Automation.

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
1	Assignment on intelligent building.	CO1
2	Assignment on BAS.	CO1
3	Assignment on HVAC.	CO2
4	Assignment on Direct Digital Control of an HVAC system.	CO2

5	Assignment on BACnet and its features.	CO2
6	Assignment on lighting- control systems.	CO3
7	Assignment on fire alarm systems.	CO4
8	Assignment on access Control System.	CO5
9	Assignment on CCTV systems.	CO5
10	Assignment on building system integration.	CO6
11	Case study – Intelligent building of hospital/hotel/airport.	CO1, CO2

Any other experiments/assignments based on syllabus which will help students to understand topic/concept.

• Visit to intelligent building of hotel/hospital/airport is advised to understand the Building Automation subject.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments)	:	10	Marks
Laboratory work (programs / journal)	:		10	Marks
Attendance	:	5	Ma	arks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL705	Project-I	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		-	6	-	-	3	-	3

Sub	Subject	Examination scheme								
Code	Name	Theory (o		Term	Pract	Oral	Total			
		Internal A	End	work	. and					
		Test1	Test2	Avg.	sem		Oral			
					Exam					
ISL705	Project-I	-	-	-	-	50	-	50	100	

Term Work:

The final year students have already under gone project assignment in their third year in Mini Project I and II. In final year, group of maximum **four** students will be completing a comprehensive project work based on the courses studied. The project work may be internally assigned or externally assigned by the research institutes and industry etc. Each group will be assigned one faculty as a supervisor. This project work in final year may be extension of the Mini Project work done in third year.

The main intention of project work is to enable students to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The project work may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be

- Learning additional skills
- Development of ability to define, design, analysis and implementation of the problem and lead to its accomplishment with proper planning
- Learn the behavioral science by working in a group
- The project area may be selected in which the student intend to do further education and/or may be either intend to have employment or self employment
- The topic of project should be different and/or may be advancement in the same topic of Mini Project
- The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of project work.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.